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ABSTRACT 
Motivation: Next-generation sequencing techniques allow us to 
generate reads from a microbial environment in order to analyze the 
microbial community. However, assembling of a set of mixed reads 
from different species to form contigs is a bottleneck of metagenom-
ic research. Although there are many assemblers for assembling 
reads from a single genome, there are no assemblers for assem-
bling reads in metagenomic data without reference genome se-
quences.  Moreover, the performances of these assemblers on me-
tagenomic data are far from satisfactory because of the existence of 
common regions in the genomes of subspecies and species which 
make the assembly problem much more complicated. 
Results: We introduce the Meta-IDBA algorithm for assembling 
reads in metagenomic data which contain multiple genomes from 
different species. There are two core steps in Meta-IDBA. It first tries 
to partition the de Bruijn graph into isolated components of different 
species based on an important observation. Then, for each compo-
nent, it captures the slight variants of the genomes of subspecies 
from the same species by multiple alignments and represents the 
genome of one species using a consensus sequence. Comparison 
of the performances of Meta-IDBA and existing assemblers, such as 
Velvet and Abyss, for different metagenomic datasets shows that 
Meta-IDBA can reconstruct longer contigs with similar accuracy. 
Availability: Meta-IDBA toolkit is available at our website 
http://www.cs.hku.hk/~alse/metaidba. 

1 INTRODUCTION  
Metagenomic research studies the genetic information in an entire 
microbial community. It plays an important role in microbiology 
because over 99% of microbes can neither be isolated nor cultured 
(Wooley, et al., 2010). Recent advances in next-generation se-
quencing technology allow us to generate reads from genomes of 
multiple species in these samples in an effective manner. The set of 
reads obtained is very complicated which makes the assembling of 
genomes of species that exist in the sample extremely difficult. 
There are two main approaches to study reads from these samples. 
One is to group (called binning) the reads according to some bio-
logical markers or structural features (Huson, et al., 2007; Krause, 
et al., 2008; Yang, et al., 2010). Then, reads belonging to different 
species are studied. The other is to deduce the potential biological 
functions of the whole community by studying the reads directly 
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using gene prediction or function annotation (Mavromatis, et al., 
2007; Qin, et al., 2010; Wooley, et al., 2010). Since the reads from 
the next-generation sequencing technologies are still relatively 
short, it is more effective if longer contigs can be constructed from 
the reads before conducting the study even though we are not able 
to assemble the genome of every species. High quality assembly 
results of the contigs are desirable in both approaches. If the as-
sembled contigs are short and erroneous, the accuracy of binning, 
gene prediction, function annotation, etc will be impaired. Thus, 
assemblers that can generate longer and more accurate contigs will 
definitely facilitate the study of metagenomic data. 
 
If similar reference genomes exist in the database, one can assem-
ble reads by first aligning them to the reference genomes (Gnerre, 
et al., 2009). However, as over 90% of microbes in metagenomic 
data are unknown (Wooley, et al., 2010), de novo assemblers are 
needed to assemble reads without any reference genomes. To our 
knowledge, currently there are no de novo metagenome-specific 
assemblers available. Assemblers such as EULER (Chaisson, et al., 
2009; Chaisson and Pevzner, 2008; Pevzner, et al., 2001), Velvet 
(Zerbino and Birney, 2008; Zerbino, et al., 2009), Abyss (Simpson, 
et al., 2009), SOAPdenovo (Li, et al., 2010) are for single genome 
but are used in metagenomic study (Wooley, et al., 2010). All these 
assemblers are based on the de Bruijn graph (Pevzner, et al., 2001) 
which is a common approach to perform de novo assembly. In the 
de Bruijn graph, a vertex represents a length-k substring called k-
mer and an edge connecting vertices u and v represents u and v 
appearing consecutively in a read. All these assemblers generate 
the de Bruijn graph from reads, and then apply some error removal 
methods (Simpson, et al., 2009; Zerbino and Birney, 2008), e.g. 
removing tips and merging bubbles, to modify the graph based on 
its topological structure. Simple paths in the graph are outputted as 
contigs and paired-end information might be applied to further 
merge the contigs. 
 
These existing assemblers do not work well for metagenomic data-
sets except for some very small datasets containing specific species 
(Pop, 2009). Two main properties of a reasonably complicated 
metagenomic dataset make these assemblers fail to produce long 
contigs: (i) polymorphisms among similar subspecies and common 
genomic regions shared by different species and (ii) uneven abun-
dance ratios of species in a sample. The polymorphism of similar 
subspecies, especially subspecies of the same species, consists of 
very similar sequences with few variations (single nucleotide var-
iation, short insertion or deletion, or genomic rearrangements, etc.) 
and each variation introduces a branch in the de Bruijn graph (we 
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call these branches sp-branches). Another source of branches is  
due to the common or similar genomic regions, say housekeeping 

genes, shared by different species (we call these branches cr-
branches). These two types of branches which do not exist when 
assembling single genomes would make the de Bruijn graph for 
metagenomic data very complicated. Since existing assemblers 
output simple paths in the graph as contigs, these extra branches 
caused by common regions in different species prevent the con-
struction of long contigs. 
 
Some assemblers resolve branches by merging similar sequences 
as bubbles into one sequence. A bubble is defined as several simi-
lar paths with the same start vertex and the same end vertex 
(Zerbino and Birney, 2008) in the de Bruijn graph. Bubble merging 
helps to merge similar regions and reduce complexity of the de 
Bruijn graph. An important assumption used by assemblers to re-
move bubbles for single genome assembly is that the bubble is 
caused by a few SNPs (single nucleotide polymorphism) or errors 
in reads; thus the simple paths inside a bubble are very similar 
except for a few nucleotides. However, the “bubbles” found in the 
graph for metagenomic dataset do not follow this assumption. Dif-
ferent bubbles mix together to make the start vertex and the end 
vertex very difficult to be identified. Some of these bubbles are 
formed by a mixture of sp-branches and cr-branches. Figure 1 
shows an example of this phenomenon in which every simple path 
is contracted into a vertex for visualization. All branches at a ver-
tex in this graph normally lead to some other vertex in the same 
component but it is uncertain that these are bubbles for merging. If 
we look closer at these bubbles, even if the bubble is formed only 
by sp-branches (because of variations in subspecies), the multiple 

paths inside the bubble may differ a lot (maybe with larger inser-
tion/deletion). Existing approaches for merging bubbles for single 
genome assembly do not work for this case, thus they will fail to 
resolve these “bubbles” and are unable to construct long contigs. 
Even if all bubbles can be identified, it is not easy to merge them 
together to form a consensus. 
 
To resolve branches in a de Bruijn graph, existing assemblers also 
try to use paired-end information to help find paths with paired-end 
reads support so as to eliminate those branches caused by erroro-
neous reads and to construct longer contigs. In the case of multiple 
subspecies, each path will have a lot of support since they are not 
caused by erroroneous reads, but variations in subspecies and the 
assemblers are not able to resolve these branches easily. Moreover, 
since the contigs are short, applying paired-end information be-
comes difficult, because usually paired-end information can only 
be applied to connect long contigs.  
 
To show the complexity of a de Bruijn graph for metagenomic 
dataset, Table 1 compares graphs and assembly results of simulated 
reads sampled from a single genome (E. coli 536) and from 5 dif-
ferent E. coli subspecies genomes. Table 1 shows that the 5 E.coli 
subspecies contain about twice the number of k-mers as that of a 
single E.coli subspecies, but 150 times more branches as that of 
single subspecies. This makes the graph complicated and genome 
assembly difficult. In fact, the performance of all the assemblers is 
poor when there are a lot of subspecies. The N50 values of Velvet , 
Abyss and SOAPdenovo drop from 178,914 bp, 32,440 bp and 
125,404 bp for single genome data to 875 bp, 849 bp and 713 bp. 
respectively for metagenomic data with 5 subspecies. Uneven ab-
undance ratios in metagenomic data introduce another problem in 
assembly because existing assemblers cannot distinguish errorone-
ous reads sampled from genomes with high abundance ratios and 
reads from genomes with low abundance ratios. Thus, it is difficult 
to identify species with the low abundance ratios. 
 
Resolving the branches (both sp-branches and cr-branches) in the 
graph is one of the key issues for solving the problem of metage-
nomic assembly. In this paper, we focus on this issue. We remark 
that the issue of uneven abundance ratios of subspecies is also very 
important and difficult to solve and demands dedicated research 
effort. 
 
Conceptually, we look at the problem from the following perspec-
tive. The cr-branches (caused by common regions in different spe-
cies) should be removed to isolate one species from another. For 
sp-branches, since they are caused by variations of subspecies, 
instead of producing separate contigs for individual subspecies, it 
is preferable to represent possible variations (e.g. insertion) of 
similar sequences. The core of our proposed metegenomic assemb-
ler, Meta-IDBA, has two steps. The first step is to identify and 
remove cr-branches in the de Bruijn graph leaving a set of con-
nected components, each of which hopefully corresponds to a set 
of subspecies of the same species. The second step is to transform 
each component into a multiple alignment with consensus so as to 
represent the contigs of different subspecies of the same species. 

 
Figure 1: A component in de Bruijn graph of 5 E.coli subspecies 
 

  E.coli 536 5 E.coli subspecies 
k  50 50 

# of k-mers  4,859,649 11,533,119 
# of branches  810 130,045 

Velvet # of contigs 226 13,516 
 N50 178,914 875 
 Coverage 99.33% 90.24% 

Abyss # of contigs 337 27,428 
 N50 32,440 849 
 Coverage 99.77% 94.15% 

SOAPdenovo # of contigs 247 21,589 
 N50 125,404 713 
 Coverage 99.81% 94.20% 

Meta-IDBA # of contigs 256 9,292 
 N50 122,317 5,781 
 Coverage 99.64% 88.37% 

Table 1: Assembly results of E.coli 563 and 5 E.coli subspecies. 
Simulated length-75 reads are sampled randomly from references 
with 1% error and 250 insert distance with depth of 30. 

 
 Species Genus Family Order Class phylum 
similarity 63.2% 7.3% 2.3 % 0.06% 0.02% 0.01% 

Table 2: k-mer similarity (k = 50) in different taxonomic level. For 
each level, 1000 pairs of subspecies with lowest common ancestor 
of that level are generated randomly for k-mer similarity calcula-
tion. 
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To distinguish cr-branches from sp-branches, the main idea is 
based on the fact that the genome sequences of subspecies in the 
same species are more similar than those from different species. 
Thus, more common k-mers are shared by the genome sequences 
of subspecies of the same species. Table 2 summarizes the k-mer 
similarity between subspecies within different taxonomic levels. 
The similarity inside the same species is much higher than that of 
the genus. 60% similarity means that on average two k-mers of a 
subspecies will share at least one with another subspecies. Moreo-
ver, although the average similarity at the genus level is 7.3%, the 
common k-mers concentrate at some common regions shared by 
different species and is less than 1% at other regions. Nevertheless, 
reads from species further apart in higher taxonomic levels will 
share fewer k-mers. 
 
Similar observations are also made in (Fofanov, et al., 2004) that a 
k-mer, with k ≥ 20, tends to occur uniquely in the genome of a 
single species. Therefore in the de Bruijn graph, sp-branches 
started from a common k-mer in similar subspecies usually have 
(converge to) another common k-mer within a short distance while 
cr-branches started from a common k-mer in multiple species sel-
dom have another common k-mer within a short distance. By re-
moving those branches that cannot converge to another k-mer with-
in a short distance, the genome of a species with several subspecies 
can be represented by connected components in the de Bruijn 
graph where each component represents similar contigs in the ge-
nomes from similar subspecies. As the contigs for each subspecies 
in the same component are with slight differences, a consensus 
contig can be found by multiple alignment (to capture the varia-
tions of the genome of the subspecies) to represent the genome of 
the species. Thus instead of outputting simple paths in the de 
Bruijn graph to represent contigs, connected components 
representing consensus contigs of species will be output. As shown 
in Table 1, our assembler called Meta-IDBA is more effective in 
assembling reads in metagenomic data where the N50 of Meta-
IDBA is 5,781 bp, about 7 times longer than those of Velvet, Abyss 
and SOAPdenovo. We agree that the improvement in contig 
lengths mainly stems from the multiple alignment with consensus 
representation of the components which seems to be a more appro-
priate output for contigs belonging to different subspecies due to 
variations. Moreover, if the similar regions cannot be separated, it 
will be too expensive to do multiple alignment among resulting 
contigs. To summarize, our work has two major contributions: to 
isolate components that derive from similar subspecies of the same 
species in the complicated de Bruijn graph of a metagenomic data-
set; and to report the contigs of the subspecies using multiple 
alignment to highlight possible variants.  

2 METHODS 
 
In this section, we will describe our algorithm, Meta-IDBA, for 
assembling reads from multiple genomes of subspecies in different 
species. There are two main steps in Meta-IDBA as shown in Fig-
ure 2. Initially (Step 1) sequencing reads are used to construct a de 
Bruijn graph using any de Bruijn graph-based assembler (Chaisson 
and Pevzner, 2008; Peng, et al., 2010; Simpson, et al., 2009; 
Zerbino and Birney, 2008). Each simple path in the de Bruijn graph 
might represent a contig of the genome of some species or subspe-
cies. As there are some sequences appearing in multiple species, 
the de Bruijn graph of reads from different species are intercon-

nected by cr-branches. In the second step (step 2), based on the 
assumption that the genomes of subspecies from the same species 
share more similar regions than the genomes of subspecies from 
different species, Meta-IDBA divides the de Bruijn graph into 
many small connected components by removing cr-branches. As 
the genome sequences of subspecies even from the same species 
are not exactly the same, the consensus contig may not be 
represented by a simple path in the de Bruijn graph but may be 
represented by a component with multiple paths (due to sp-
branches) from a source vertex to a single sink vertex, so as to 
confine the variations of the similar regions in each genome. These 
small components are then merged into bigger components which 
represent longer consensus contigs using paired-end reads (step 3). 
In the last step of Meta-IDBA (step 4), each component is trans-
formed to a multiple alignment of similar contigs of different subs-
pecies from the same species. The consensus contig, which 
represents the similar contigs of the subspecies in a species, is 
found. The steps of Meta-IDBA will be described in detail in the 
following sections. 

Reads from 
metagenomic data  

de Bruijn graph 

Step 1: IDBA 

Step 2: Divide into components 

Step 3: Merge components 

Step 4: Transform to alignments 
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Figure 2: Workflow of Meta-IDBA algorithm. 
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2.1 Construct de Bruijn Graph 

Any genome assembler based on the de Bruijn graph approach 
(Chaisson, et al., 2009; Peng, et al., 2010; Pevzner, et al., 2001; 
Simpson, et al., 2009; Zerbino and Birney, 2008) can be used to 
assemble reads to form contigs as if the reads were from a single 
genome. The de Bruijn graph-based algorithm first divides each 
reads into length-k substrings called k-mers. Each k-mer is 
represented by a vertex in the de Bruijn graph. There is an edge 
from u to v if the length k – 1 suffix of k-mer u is the same as the 
length k – 1 prefix of k-mer v and k-mers u and v occur adjacently 
in at least one read. In the single genome assembly problem, each 
simple path in the de Bruijn graph represents a contig of the ge-
nome and each branch represents a repeat region in the genome or 
an error in the read. The IDBA genome assembler (Peng, et al., 
2010) is used in our implementation as IDBA iteratively increases 
the value of k and removes k-mers with few supports from reads, 
more branches can be resolved and longer contigs of the genome 
can be obtained. However, metagenomic data contains reads from 
genomes of multiple species, and the sp-branches and cr-branches 
in the de Bruijn graph represent common regions occurring in ge-
nomes of different species or subspecies. These kinds of branches 
cannot be removed by the single genome assembler and thus very 
short contigs will be produced especially for samples with many 
subspecies of the same species. Thus, additional steps are required 
for resolving these branches. 
 
2.2 Divide Graph into Connected Components 

Based on the well accepted idea (Pop, 2009) that genomes of subs-
pecies in the same species are more similar than genomes of subs-
pecies from different species, Meta-IDBA divides the de Bruijn 
graph into connected components such that each component 
represents a consensus contig of a species. With the assumption 
that genomes of subspecies from the same species are very similar, 
there are many similar regions along the genome where common k-
mers (e.g. k = 50) do not appear too distinct and at least one com-
mon k-mer exists within a relative short region of length w (e.g. w 
= 300 bp). On the other hand, the genomes of subspecies from 
different species seldom contain a common k-mer so frequently. 
Based on this assumption, we divide the de Bruijn graph into com-
ponents by solving the following graph partitioning algorithm. 
 
Graph Partition Problem: Given a directed graph G, the graph 
partition problem is to partition the graph into maximal connected 
components that satisfy the following property. For each vertex u 
in a component C, there is another vertex v in C such that (1) start-
ing from each out-going edge e of u, there is at least a path from u 
to v in C with length at most w, or (2) for every in-coming edge e 
of u, there is at least a path from v to u in C with length at most w. 

 
The idea behind the formulation of the graph partition problem is 
as follows. If a k-mer u can reach another k-mer v in a de Bruijn 
graph through a path of length at most w starting from each of its 
out-going edges (or vice versa), k-mers u and v are likely to occur 
in the genomes of subspecies from the same species, which 
represent high similarity among the genomes of the subspecies. 

Otherwise, k-mers u and v may occur in genomes of different spe-
cies and they should be separated.  
 
The graph partition problem can be solved by a greedy algorithm 
which repeatedly checks all out-going (in-coming) edges of each 
vertex. If there are no paths of length at most w starting from (end-
ing with) the out-going (in-coming) edges of a vertex u that ends 
with (start from) another vertex v, all the out-going (in-coming) 
edges of vertex u are removed from the de Bruijn graph. The re-
moving process will be repeated until all components satisfy our 
requirements. The correctness of this greedy algorithm is proved in 
Theorem 1. The process will remove the cr-branches as well as 
some of the sp-branches, resulting in many small connected com-
ponents with close common regions (k-mers) representing consen-
sus contigs of a single species. 
 
Theorem 1: The greedy algorithm solves the graph partition prob-
lem. 
Proof: By induction of the number of removing edges. When the 
first edge e1 = (u1,u1’) is removed by the greedy algorithm, edge e1 
should not be in any component because either there is no vertex v 
such that all out-going edges of u1 can access v in a path in G with 
length at most w or there is no vertex u such that u can access u1’ 
by paths in G with length at most w that end with each in-coming 
edges of u1’. Consider the k-th edge ek = (uk,uk’) removed by the 
greedy algorithm. Either there is no vertex v such that all out-going 
edges of uk can access v in a path in G/{e1, …, ek-1} with length at 
most w or there is no vertex u such that u can access u1’ by paths in 
G/{e1, …, ek-1} with length at most w that end with each in-coming 
edges of uk’. Since the edges e1, …, ek-1 are not in any component, 
edge ek should not be in any component.           
 
2.3 Connect components by paired-end reads 

After solving the graph partition problem, larger components may 
be broken down into smaller components because of the erroneous 
reads and common regions among different species and each com-
ponent will representing a consensus contig of subspecies from a 
single species. Meta-IDBA merges the components into larger 
components using paired-end reads. A paired-end read represents 
two reads appearing in the same genome with known order and 
distance (insert distance). One end of a paired-end read is consi-
dered to appear in a component if a k-mer of the read appears in 
the component. If the two ends of a paired-end read appear in dif-
ferent components, the paired-end read is considered as a support 
that the two components should be merged into a larger component. 
Meta-IDBA merges the components if there are at least α (e.g. α = 
10) supports from paired-end reads and the two components are 
connected by the shortest path which matches with the insert dis-
tance of the pair-end reads only if the merging is unambiguous (i.e. 
the merging will not be performed if a component has enough sup-
ports to connect to more than one component). Moreover, only the 
components with consensus contig longer than insert distance are 
considered in this procedure, because otherwise a component 
caused by a repeat region shorter than insert distance will be con-
nected to multiple components with enough supports. 
 
2.4 Construct Multiple Alignment and Consensus Contigs 
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Since the genomes of the subspecies from the same species are 
similar with small variants, it is very difficult to determine long 
contigs (simple path) from each subspecies because these contigs 
are interconnected in the de Bruijn graph. Instead of representing a 
contig of a species by a simple path, a consensus contig of the 
species (which has many subspecies) is represented by a compo-
nent which is usually a direct acyclic graph (with exception when 
there is repeat region in the contig) to capture the small variants 
among the genomes of different subspecies in the same species. 
Each simple path in the component represents a short contig of a 
subspecies and the relative positions of these short contigs can be 
obtained from the structure of the directed acyclic graph. In order 
to obtain a contig of a single species from the component, multiple 
alignment of the short contigs represented by simple paths is per-
formed. Meta-IDBA starts with an alignment of some short simple 
subpaths at the source vertex of the component and progressively 
constructs the alignments of longer contigs with reference to the 
longest subpath because it provides more information of the ge-
nomes of the subspecies than the short subpaths with deletions. As 
the relative position of each simple path can be determined, the 
alignment between each simple subpath can be found locally. Fi-
nally, each component is represented by a consensus contig ob-
tained through multiple alignment. 

3 RESULTS 
 
3.1 Simulated data 

To compare the performance of Meta-IDBA with the other assem-
blers, we constructed three datasets with different complexities. 
The NCBI RefSeq (Pruitt, et al., 2009) database was used for gene-
rating the simulated sequencing reads. Table 3 summarizes the 
composition and experiment result of each dataset. 
 
For low complexity datasets, two species, each having at least two 
subspecies within a genus, were selected. Length-75 sequencing 
reads were sampled from the selected reference genome at 30x 
depth. In all datasets, the error rate and insert distance were set to 
1% and 250, respectively. Medium-complexity and high-
complexity datasets were generated similarly according to the 
properties shown in Table 3. Two distributions of abundance ratios 
were used to generate simulated sequencing reads. The first one 
was uniform distribution, for a situation without uneven abundance 
ratios. The other one was lognormal distribution, since some re-
search on species richness estimation in metagenomic data shows 

  Low-complexity  Medium-complexity High-complexity 

Taxonomic level  ≤ Genus ≤ Family ≤ Class 

# of species  2 5 10 

# of cases  10 10 5 

Expression level  Uniform Lognormal Uniform Lognormal Uniform Lognormal 

Meta-IDBA Component Accuracy 98.82% 98.80% 98.32% 98.16% 99.35% 99.1% 

N50  18,729 20,689 11,111 14,610 8,246 9,553 

Coverage 91.76% 89.20% 87.39% 81.62% 91.47% 84.16% 

# of contigs 2,674 2,180 13,627 7,716 55,249 38,500 

# of bases 5,418,695 5,223,474 20,615,422 17,644,012 68,465,188 58,088,054 

# of error contigs 9 9 26 21 90 223 

# of error bases 57,645 44,427 115,050 82,159 336,429 371,334 

Time 12.5m 12.1m 54.1m 55.2m 120.1m 115.7m 

Velvet N50 11,437 9,771 3,356 3,433 1,983 1,997 

Coverage 87.29% 83.70% 86.83% 84.88% 92.39% 75.77% 

# of contigs 2,309 2,230 12,839 11,208 106,917 37,567 

# of bases 4,876,110 4,674,621 15,824,798 16,017,085 70,072,915 44,948,173 

# of error contigs 9 7 16 14 196 59 

# of error bases 54,364 34,796 62,470 70,148 401,434 230,525 

Time 16.8m 15.2m 44.7m 45.0m 96.4m 95.8m 

Abyss N50 2,395 3,608 1,188 1,570 1,484 2,511 

Coverage 95.06% 93.40% 93.80% 88.97% 94.56% 86.53% 

# of contigs 10,724 8,448 48,409 35,796 123,583 85,837 

# of bases 8,199,665 8,151,930 31,072,592 26,252,905 94,857,363 81,759,539 

# of error contigs 15 20 45 42 426 389 

# of error bases 24,035 22,733 43,112 39,118 173,856 163,246 

Time 38.3m 37.5m 147.7m 145.7m 319.0m 323.1m 

SOAPdenovo N50 7,457 8,233 2,502 2,171 1,806 1,351 

Coverage 93.57% 93.91% 94.97% 93.77% 97,27% 87.37% 

# of contigs 7,742 7,566 42,158 41,446 124,756 116,723 

# of bases 6,253,699 6,210,923 25,421,067 24,160,482 80,261,153 63,438,459 

# of error contigs 6 7 20 26 94 159 

# of error bases 16,337 28,987 57,283 60,601 185,439 160,779 

Time 11.3m 10.2m 39.8m 37.6m 84.7m 85.1m 

 

Table. 3 The compositions and experiment results of simulated datasets. 



Peng et al. 

6 

that lognormal distribution fits the data well (Hong, et al., 2006; 
Youssef and Elshahed, 2008).  
 
For comparison, Velvet, Abyss, SOAPdenovo and Meta-IDBA 

were executed on the above three datasets. In all experiments, the k 
value of the de Bruijn graph was set to 50. Default values were 
used for all assemblers, except option "-M 3 -F" is activated to 
merge similar regions for SOAPdenovo. The quality of assembler 

 
Figure. 3 Experiment results of low-complexity datasets.  
 

 
Figure. 4 Experiment results of medium-complexity datasets.  
 

 
Figure. 5 Experiment results of high-complexity datasets.  
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output was measured in three aspects on resultant contigs: N50 for 
contiguity, coverage for completeness, number of erroneous bases 
for accuracy. If the assembler generates scaffolds with wildcard 
nucleotide symbol 'N' inside, the 'N' will be removed to split the 
scaffolds into contigs. Correctness was checked by alignment, and 
a contig is considered as correct if it can be aligned to a reference 
with 95% similarity by BLAT (Kent, 2002). The 95% similarity 
means that the sum of mismatch bases and the in-del length should 
not be larger than 5% of a contig. In the calculation of N50 and 
coverage, only correct contigs are considered. For Meta-IDBA, 
one more measures, is considered. The component accuracy indi-
cates how accurate graph separation method works. A component 
is considered as correct only if 95% of the bases inside one com-
ponent are actually from the same species. The experimental re-
sults for datasets of different complexities are shown in Figures 3 
to 5, and the average values of all measurements are summarized 
in Table 3.  
 
For the low-complexity dataset, Meta-IDBA had the longest N50 
in most cases, i.e. about 1.5 or more times that of Velvet, Abyss 
and SOAPdenovo. In a few cases, Velvet had similar or better N50 
than Meta-IDBA because the graph separation algorithm in Meta-
IDBA partitioned some parts of the graph into components which 
could be better handled by bubble merging for low-complexity 
datasets. When considering coverage, all the assemblers had simi-
lar performances. In general, Abyss and SOAPdenovo had slightly 
better coverage and produced more contigs. Velvet and Meta-IDBA 
had similar numbers of erroneous contigs, which are a little more 
than Abyss and SOAPdenovo generated. Component accuracy 
showed that Meta-IDBA can separate contigs from different spe-
cies accurately. When considering lognormal distribution, it is 
interesting to note that N50 of the assembly results increased in 
some cases. This is because some subspecies, having low coverage 
after introducing different abundance ratios, can be considered 
removed from the dataset, reducing the complexity of the dataset. 
Consequently, the resultant contigs from the other similar species 
did not form complicated components. Overall, the N50 of Meta-
IDBA for the lognormal distribution was always better than that of 
the uniform distribution, because we applied the de Bruijn graph 
based assembler IDBA (Peng, et al., 2010) which does not rely on 
the read coverage of the genome very much.  
  
For medium-complexity datasets, Meta-IDBA always gave the best 
N50 among all assemblers. This means Meta-IDBA is able to 
group similar regions from different subspecies of the same species 
together effectively when the complexity of graph increases, while 
the bubble merging method failed in this situation. The perfor-
mances of all assemblers in coverage and accuracy were similar to 
those of low-complexity data. 
 
The performance of the high-complexity datasets further con-
firmed that Meta-IDBA can handle complicated graphs. The N50 
of the other assemblers is much shorter, while that of Meta-IDBA 
only decreased slightly. The other measures remained similar as 

before. 
 
All the experiments were executed in an 8-core machine with 
144GB memory. The runtime of Meta-IDBA and Velvet shown in 
Table 3 is more or less the same but shorter than that of Abyss. 
 
3.2 Real data 

A real metagenomic sequencing dataset (SRX024329) from NCBI 
(http://www.ncbi.nlm.nih.gov/)  was used to evaluate the perfor-
mance of all assemblers in practice. It is a human metagenome 
sample from the G_DNA_Tongue dorsum of a female participant 
in the dbGaP study "HMP Core Microbiome Sampling Protocol A 
(HMP-A)". Meta-IDBA provided the longest contigs among the 
assemblers (Table 4). It is difficult to access the accuracy of these 
results, since there are no references for most of species in the real 
dataset. However, based on the results of simulated experiments, 
we have high confidence that Meta-IDBA can produce correct 
contigs and components. 

 
3.3 Multiple alignment of component 

In the last step of Meta-IDBA, multiple alignments are performed 
among contigs in each component. Because of the restrictive prop-
erties of the components, all contigs in one component represent 
similar subsequences in some subspecies of the same species. Fig-
ure 6 presents part of the multiple alignment of a component from 
5 E.coli subspecies, which shows similar contigs with a small 
number of variants. We can confirm confidently that the multiple 
alignment as shown in Figure 6 represents contigs from similar 
subspecies.  

4 DISCUSSION AND CONCLUSION 
We tackled the assembly difficulty caused by the polymorphism in 
similar species in metagenomic environment. Similar regions be-
tween species make the de Bruijn graph more complicated. Based 
on the observation that the genomes of subspecies from the same 
species share much more common k-mers than the genomes of 
subspecies from different species, we define component to present 
the similar regions among subspecies from the same species. The 
assembly problem can then be modeled as a graph partition prob-
lem. After that, we designed an algorithm to identify the compo-
nents from de Bruijn graph. Finally, paired-end reads are used to 
further connect components together.  
 

 # of contigs Total bases N50 Maximum 
Metaidba 121,924 74,493,748 2380 371,462 
Velvet 199,310 80,297,709 738 207,709 
Abyss 203,983 102,106,241 956 121,166 
SOAPdenovo 271,500 110,655,983 591 367,374 

Table. 4 Experimental results of real data 

TCAATGGTGGCGGGCTTCAATGGTGGCGGGCTTCAATGGTGGCGGGCTTCAATGGTGGCGGGCT…………TCCGTCTCCGTCTCCGTCTCCGTC…………GCGGCGGCGGCG…………ACGACGACGACG…………CGGCGGCGGCGG…………GTTGTTGTTGTT…………GCAAGCAAGCAAGCAA…………AATAAATAAATAAATA…………TCGTCGTCGTCG…………GACGGACGGACGGACG…………ACCACCACCACC…………ACGCTGCACGCTGCACGCTGCACGCTGC…………TTTTTTTT…………TAGACTCGCTAGACTCGCTAGACTCGCTAGACTCGC…………ACAAACAAACAAACAA…………ACAACACAACACAACACAAC…………GTGACCGGTGACCGGTGACCGGTGACCG…………AGATAGATAGATAGAT…………TGCTTGCTTGCTTGCT…………ACGCACGCACGCACGC…………AGAAGAAGAAGA…………GTGGTGGTGGTG…………GTAATCGGTAATCGGTAATCGGTAATCG…………    

TTTTTTTTAAAAAAAACCCCGGTGGGGTGGGGTGGGGTGGTTTTGGGTTGGGTTGGGTTGGGTT…………TCTCTCTCTTTTGGGGCCCCCCCC…………GCGGCGGCGGCG…………AAAATTTTGGGG…………CGGCGGCGGCGG…………GGGGCCCCTTTT…………GCAAGCAAGCAAGCAA…………AAAACCCCCCCCAAAA…………TTTTTTTTGGGG…………GAGAGAGATTTTGGGG…………ACCACCACCACC…………ACGCTGCACGCTGCACGCTGCACGCTGC…………TTTTCCCC…………TCGACTCGCTCGACTCGCTCGACTCGCTCGACTCGC…………AAAATTTTAAAAAAAA…………ACAACACAACACAACACAAC…………GTGACCGGTGACCGGTGACCGGTGACCG…………AGATAGATAGATAGAT…………TGTGTGTGTTTTTTTT…………ATGCATGCATGCATGC…………AAAAAAAAAAAA…………GGGGCCCCGGGG…………GGGGCCCCAAAAAAAACCCCCGCGCGCG…………    

TCATCATCATCAGGGGTGGTGGTGGTGGCCCCGGCGGGGCGGGGCGGGGCGGAAAATTTTTTTT…………TCCGTCTCCGTCTCCGTCTCCGTC…………GGGGAAAAGGGG…………ACGACGACGACG…………CCCCAAAAGGGG…………GGGGCCCCTTTT…………GCAAGCAAGCAAGCAA…………AATAAATAAATAAATA…………TCGTCGTCGTCG…………GACGGACGGACGGACG…………AAAATTTTCCCC…………ACACACACTTTTTTTTTGCTGCTGCTGC…………TTTTTTTT…………TTTTAAAAGACTCGCGACTCGCGACTCGCGACTCGC…………ACAACAACAACAAAAA…………ACACACACGGGGACACACAC…………GTGATCGGTGATCGGTGATCGGTGATCG…………AAAAAAAAATATATAT…………TGCTTGCTTGCTTGCT…………                                                                                        

TCAATGGTGGCTCAATGGTGGCTCAATGGTGGCTCAATGGTGGC____GGCTGGCTGGCTGGCT…………TCCGTCTCCGTCTCCGTCTCCGTC…………GCGGCGGCGGCG…………ACGACGACGACG…………CGGCGGCGGCGG…………GTTGTTGTTGTT…………GCAAGCAAGCAAGCAA…………AATAAATAAATAAATA…………XXXXXXXXXXXX…………GAGAGAGA____GGGG…………XXXXXXXXXXXX…………ACACACACTTTTTTTTTGCTGCTGCTGC…………TTTTTTTT…………TCGACTCGCTCGACTCGCTCGACTCGCTCGACTCGC…………ACAAACAAACAAACAA…………ACAACACAACACAACACAAC…………GGGGCCCCGATCGGATCGGATCGGATCG…………AGATAGATAGATAGAT…………TGCTTGCTTGCTTGCT…………ATATATAT____CCCC…………                                                                    

TCAATGGTGTCAATGGTGTCAATGGTGTCAATGGTG____CGGGCTCGGGCTCGGGCTCGGGCT…………XXXXXXXXXXXXXXXXXXXXXXXX…………GCGGCGGCGGCG…………ACGACGACGACG…………CGGCGGCGGCGG…………GTTGTTGTTGTT…………GCGCGCGCGGGGAAAA…………XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX…………ACGCTGACGCTGACGCTGACGCTGCCCC…………TTTTTTTT…………TCGACTCTCGACTCTCGACTCTCGACTCTTTTCCCC…………XXXXXXXXXXXXXXXX…………XXXXXXXXXXXXXXXXXXXX…………XXXXXXXXXXXXXXXXXXXXXXXXXXXX…………AGATAGATAGATAGAT…………TGCTTGCTTGCTTGCT…………AAAACCCCGCGCGCGC…………AGAAGAAGAAGA…………GTGGTGGTGGTG…………GTAATCGGTAATCGGTAATCGGTAATCG…………    

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX…………XXXXXXXXXXXXXXXXXXXXXXXX…………XXXXXXXXXXXX…………XXXXXXXXXXXX…………XXXXXXXXXXXX…………XXXXXXXXXXXX…………XXXXXXXXXXXXXXXX…………XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX…………ACGCTGCACGCTGCACGCTGCACGCTGC…………TTTTCCCC…………                                                                                                                                                                                                                                                    

 

Figure. 6 Multiple alignment of a component in 5 E.coli subspecies. Consensus is shown in the first row. Contigs are separated by spaces. 
The conserved nucleotides are represented by dots. The difference between contigs and consensus are highlighted . 
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Experiments on datasets of different complexities showed that 
Meta-IDBA can usually produce the longest contigs with similar 
accuracy and coverage when compared with other assemblers, 
especially for high-complexity datasets which contain more 
branches since there are more genomes in the dataset. Besides 
reconstructing longer contig, Meta-IDBA provides a multiple 
alignment of similar contigs from different subspecies in the same 
species which represents the variants among genomes of these 
subspecies. The multiple alignment may be used to study the struc-
tural variations of genomes of different subspecies or determine 
conserved regions which have biological functions for the subspe-
cies. As the multiple alignments are constructed by a greedy algo-
rithm, further study on finding the optimal multiple alignment may 
improve the accuracy and the usage of Meta-IDBA in analyzing 
metagenomic data. At present, Meta-IDBA cannot reconstruct the 
contigs of each single subspecies because their genomes have a lot 
of common regions. Further study on using pair-end information 
and read coverage for reconstructing these contigs will be carried 
out. 
 
There are cases in which Meta-IDBA fails to separate reads from 
different species into components. One case is in low complexity 
dataset which consists of Streptococcus pyogenes and Streptococ-
cus dysgalactiae. The k-mer similarity of these two species is 
17.69% which is relatively higher than other pair of genomes 
(about 1%). On the other hand, the component accuracy of this 
dataset is 93% which means many reads in the components are 
shared by these two species and the some components represent 
similar regions of these two species. Therefore, it might not be 
necessary to separate the reads in these components since these 
components may represent regions with the significant biological 
functions necessary for both species. 
 
For metagenomic dataset with uneven abundance ratios, because 
the IDBA genome assembler does not depend much on coverage to 
create de Bruijn graph, the change in abundance ratios will not 
affect its performance too much. If each species is sampled with 
high enough coverage (the required coverage depends on the error 
rate and read length), they can be assembled by Meta-IDBA. How-
ever, uneven abundance ratios will affect the sampling rates of 
reads of different species, but the difference in sampling rates can 
also provide information to separate the reads sampled from spe-
cies with low abundance ratios and those from species with high 
abundance ratios (Wu and Ye, 2010). More research should be 
performed for studying how to make use of this information to 
improve the accuracy of Meta-IDBA.  
 
Since our graph partition algorithm cannot distinguish erroneous 
edges and correct edges inside the graph, it relies very much on the 
quality of the de Bruijn graph generated by the assembler. If there 
are many false positive edges, the graph may be partitioned into 
many small components. Similarly, if there are many species (in 
practice, there are many more species (>1000) than those used in 
our simulation), there would be more edges in the graph, which 
also leads to many small components. As shown in Table 1, there 
is a big gap between the assembly results of single species and 
metagenomic. Much can be done to improve the quality of meta-
genomic assembly.  
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