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ABSTRACT

Motivation: Next-generation sequencing techniques allow us to
generate reads from a microbial environment in order to analyze the
microbial community. However, assembling of a set of mixed reads
from different species to form contigs is a bottleneck of metagenom-
ic research. Although there are many assemblers for assembling
reads from a single genome, there are no assemblers for assem-
bling reads in metagenomic data without reference genome se-
guences. Moreover, the performances of these assemblers on me-
tagenomic data are far from satisfactory because of the existence of
common regions in the genomes of subspecies and species which
make the assembly problem much more complicated.

Results: We introduce the Meta-IDBA algorithm for assembling
reads in metagenomic data which contain multiple genomes from
different species. There are two core steps in Meta-IDBA. It first tries
to partition the de Bruijn graph into isolated components of different
species based on an important observation. Then, for each compo-
nent, it captures the slight variants of the genomes of subspecies
from the same species by multiple alignments and represents the
genome of one species using a consensus sequence. Comparison
of the performances of Meta-IDBA and existing assemblers, such as
Velvet and Abyss, for different metagenomic datasets shows that
Meta-IDBA can reconstruct longer contigs with similar accuracy.
Availability: Meta-IDBA toolkit is available at our website
http://www.cs.hku.hk/~alse/metaidba.

1 INTRODUCTION

Metagenomic research studies the genetic informatican entire
microbial community. It plays an important role fimcrobiology
because over 99% of microbes can neither be isbtaie cultured
(Wooley, et al., 2010). Recent advances in nexegdion se-
quencing technology allow us to generate reads fyenomes of
multiple species in these samples in an effectimamer. The set of
reads obtained is very complicated which makesa#isembling of
genomes of species that exist in the sample extyedifficult.
There are two main approaches to study reads fnesetsamples.
One is to group (calledinning) the reads according to some bio-
logical markers or structural features (Huson,let2®07; Krause,
et al., 2008; Yang, et al., 2010). Then, readsriggta to different
species are studied. The other is to deduce thenialt biological
functions of the whole community by studying thade directly
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using gene prediction or function annotation (Mawadis, et al.,
2007; Qin, et al., 2010; Wooley, et al., 2010).c8ithe reads from
the next-generation sequencing technologies aik retatively
short, it is more effective if longer contigs cam ¢onstructed from
the reads before conducting the study even thouglare not able
to assemble the genome of every species. Hightguesembly
results of the contigs are desirable in both apgres. If the as-
sembled contigs are short and erroneous, the amcofabinning,
gene prediction, function annotation, etc will mepiaired. Thus,
assemblers that can generate longer and more secarigs will
definitely facilitate the study of metagenomic data

If similar reference genomes exist in the database,can assem-
ble reads by first aligning them to the refereneaames (Gnerre,
et al., 2009). However, as over 90% of microbesmatagenomic
data are unknown (Wooley, et al., 2010), de nowsemblers are
needed to assemble reads without any referencargendo our
knowledge, currently there are no de novo metagergpecific
assemblers available. Assemblers such as EULERgSm et al.,
2009; Chaisson and Pevzner, 2008; Pevzner, e2G01), Velvet
(Zerbino and Birney, 2008; Zerbino, et al., 2008)yss (Simpson,
et al., 2009), SOAPdenovo (Li, et al., 2010) aresiagle genome
but are used in metagenomic study (Wooley, e2allP). All these
assemblers are based on the de Bruijn graph (Pe\etred., 2001)
which is a common approach to perform de novo askerim the
de Bruijn graph, a vertex represents a lergtubstring calledk-
mer and an edge connecting verticeandv representsi andv
appearing consecutively in a read. All these astamigenerate
the de Bruijn graph from reads, and then apply semer removal
methods (Simpson, et al., 2009; Zerbino and Bir2808), e.g.
removing tips and merging bubbles, to modify thepir based on
its topological structure. Simple paths in the grape outputted as
contigs and paired-end information might be appliedfurther
merge the contigs.

These existing assemblers do not work well for getamic data-
sets except for some very small datasets contaspegific species
(Pop, 2009). Two main properties of a reasonablnpiwated
metagenomic dataset make these assemblers faibtiuge long
contigs: (i) polymorphisms among similar subspeeied common
genomic regions shared by different species ahdifieven abun-
dance ratios of species in a sample. The polymsmplaf similar
subspecies, especially subspecies of the sameespeoinsists of
very similar sequences with few variations (singleleotide var-
iation, short insertion or deletion, or genomicrreagements, etc.)
and each variation introduces a branch in the dégmgraph (we
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Figure 1: A component in de Bruijn graph of 5 E.coli subspsc

call these branchesp-branches). Another source of branches is
due to the common or similar genomic regions, sayskkeeping

E.coli 536 5 E.coli subspecies

k 50 50
# ofk-mers 4,859,649 11,533,119
# of branches 810 130,045
Velvet # of contigs 226 13,516
N50 178,914 875
Coverage 99.33% 90.24%
Abyss # of contigs 337 27,428
N50 32,44( 84¢
Coverage 99.77% 94.15%
SOAPdenovo # of contigs 247 21,589
N50 125,404 713
Coverage 99.81% 94.20%
Meta-IDBA # of contigs 256 9,292
N50 122,317 5,781
Coverage 99.64% 88.37%

Table 1: Assembly results of E.coli 563 and 5 E.coli siduses.
Simulated length-75 reads are sampled randomly freferences
with 1% error and 250 insert distance with deptB@f

Class
0.02%

Order
0.06%

phylum
0.01%

Species Genus
63.2% 7.3%

Family

similarity 2.3 %

Table 2: k-mer similarity k = 50) in different taxonomic level. For
each level, 1000 pairs of subspecies with lowestrnon ancestor
of that level are generated randomly kemer similarity calcula-

tion.

genes, shared by different species (we call thesachescr-
branches). These two types of branches which do not extserw
assembling single genomes would make the de Bgrigph for
metagenomic data very complicated. Since existiagemblers
output simple paths in the graph as contigs, tleese branches
caused by common regions in different species prtetree con-
struction of long contigs.

Some assemblers resolve branches by merging sisglzuiences
as bubbles into one sequencebubble is defined as several simi-
lar paths with the same start vertex and the santk vertex
(Zerbino and Birney, 2008) in the de Bruijn graplabble merging
helps to merge similar regions and reduce complexfitthe de
Bruijn graph. An important assumption used by asders to re-
move bubbles for single genome assembly is thatbtiizble is
caused by a few SNPs (single nucleotide polymomphi errors
in reads; thus the simple paths inside a bubblevarg similar
except for a few nucleotides. However, the “bubbfeand in the
graph for metagenomic dataset do not follow thgiagption. Dif-
ferent bubbles mix together to make the start xeated the end
vertex very difficult to be identified. Some of #eebubbles are
formed by a mixture of sp-branches and cr-branchégure 1
shows an example of this phenomenon in which esienple path
is contracted into a vertex for visualization. Atanches at a ver-
tex in this graph normally lead to some other veitethe same
component but it is uncertain that these are bshiolemerging. If
we look closer at these bubbles, even if the butsbfermed only
by sp-branches (because of variations in subspetfes multiple

I

paths inside the bubble may differ a lot (maybehvatrger inser-
tion/deletion). Existing approaches for merging leb for single
genome assembly do not work for this case, thug Wik fail to
resolve these “bubbles” and are unable to constang contigs.
Even if all bubbles can be identified, it is nosgdo merge them
together to form a consensus.

To resolve branches in a de Bruijn graph, existisgemblers also
try to use paired-end information to help find [gt¥ith paired-end
reads support so as to eliminate those branchesedéwy erroro-

neous reads and to construct longer contigs. Ircdlse of multiple

subspecies, each path will have a lot of suppaxesthey are not
caused by erroroneous reads, but variations inpsebss and the
assemblers are not able to resolve these branekig doreover,

since the contigs are short, applying paired-erdrimation be-

comes difficult, because usually paired-end infdramacan only

be applied to connect long contigs.

To show the complexity of a de Bruijn graph for aggnomic
dataset, Table 1 compares graphs and assemblysressimulated
reads sampled from a single genome (E. coli 538)feom 5 dif-
ferent E. coli subspecies genomes. Table 1 shoatghk 5 E.coli
subspecies contain about twice the numbek-ofers as that of a
single E.coli subspecies, but 150 times more bresids that of
single subspecies. This makes the graph compliGtddgenome
assembly difficult. In fact, the performance of thié assemblers is
poor when there are a lot of subspecies. The Ni@saf Velvet ,
Abyss and SOAPdenovo drop from 178,914 bp, 32,44 Card
125,404 bp for single genome data to 875 bp, 848rth713 bp.
respectively for metagenomic data with 5 subspetieeven ab-
undance ratios in metagenomic data introduce angitodlem in
assembly because existing assemblers cannot distingrrorone-
ous reads sampled from genomes with high abundatios and
reads from genomes with low abundance ratios. Tihissdifficult
to identify species with the low abundance ratios.

Resolving the branches (both sp-branches and oches) in the
graph is one of the key issues for solving the f@mbof metage-
nomic assembly. In this paper, we focus on thigds®Ve remark
that the issue of uneven abundance ratios of sulespis also very
important and difficult to solve and demands dedidaresearch
effort.

Conceptually, we look at the problem from the fafilog perspec-
tive. The cr-branches (caused by common regiomsfiierent spe-
cies) should be removed to isolate one species &oather. For
sp-branches, since they are caused by variationsule$pecies,
instead of producing separate contigs for individiudbspecies, it
is preferable to represent possible variations. (mgertion) of
similar sequences. The core of our proposed metegerassemb-
ler, Meta-IDBA, has two steps. The first step isidentify and

remove cr-branches in the de Bruijn graph leavingetof con-
nected components, each of which hopefully cornedpdo a set
of subspecies of the same species. The secondssi@pransform
each component into a multiple alignment with coissis so as to
represent the contigs of different subspecies®ttime species.
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To distinguish cr-branches from sp-branches, thénnidea is
based on the fact that the genome sequences gfestiés in the
same species are more similar than those fromreiffespecies.
Thus, more commoR-mers are shared by the genome sequence
of subspecies of the same species. Table 2 sunesatiek-mer
similarity between subspecies within different tagmic levels.
The similarity inside the same species is much drighan that of
the genus. 60% similarity means that on averagektwers of a
subspecies will share at least one with anothesprdies. Moreo-
ver, although the average similarity at the gemwellis 7.3%, the

commonk-mers concentrate at some common regions shared by

different species and is less than a®bther regions. Nevertheless,
reads from species further apart in higher taxonolevels will
share fewek-mers.

Similar observations are also made in (Fofanoal.e2004) that a
k-mer, withk = 20, tends to occur uniquely in the genome of a
single species. Therefore in the de Bruijn grapbsbmnches
started from a commok-mer in similar subspecies usually have
(converge to) another commémer within a short distance while
cr-branches started from a commiemer in multiple species sel-
dom have another commdamer within a short distance. By re-
moving those branches that cannot converge to anotiher with-
in a short distance, the genome of a species withral subspecies
can be represented by connected components in g¢hBruijn
graph where each component represents similargsoirtithe ge-
nomes from similar subspecies. As the contigs &hesubspecies
in the same component are with slight differen@sonsensus
contig can be found by multiple alignment (to captthe varia-
tions of the genome of the subspecies) to repreébengenome of
the species. Thus instead of outputting simple paththe de
Bruijn graph to represent contigs, connected coraptn
representing consensus contigs of species willuygud. As shown
in Table 1, our assembler called Meta-IDBA is meffective in
assembling reads in metagenomic data where the dfi3@eta-
IDBA is 5,781 bp, about 7 times longer than thok®ealvet, Abyss
and SOAPdenovo. We agree that the improvement imtigo
lengths mainly stems from the multiple alignmenttméonsensus
representation of the components which seems torhere appro-
priate output for contigs belonging to differenbspecies due to
variations. Moreover, if the similar regions canbetseparated, it
will be too expensive to do multiple alignment amaresulting
contigs. To summarize, our work has two major @bations: to
isolate components that derive from similar subsgsecf the same
species in the complicated de Bruijn graph of aagethomic data-
set; and to report the contigs of the subspeci@sgusiultiple
alignment to highlight possible variants.

2 METHODS

In this section, we will describe our algorithm, tddDBA, for
assembling reads from multiple genomes of subspétidifferent
species. There are two main steps in Meta-IDBAhasva in Fig-
ure 2. Initially (Step 1) sequencing reads are useambnstruct a de
Bruijn graph using any de Bruijn graph-based assemf@haisson
and Pevzner, 2008; Peng, et al., 2010; Simpsoral.et2009;
Zerbino and Birney, 2008). Each simple path indadruijn graph
might represent a contig of the genome of someiepetr subspe-
cies. As there are some sequences appearing ifplawpecies,
the de Bruijn graph of reads from different speces intercon-

Reads from
metagenomic data

S

ﬂ Step 2: Divide into components
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ﬂ Step 3: Merge components
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Figure 2: Workflow of Meta-IDBA algorithm.

nected by cr-branches. In the second step (stepa®gd on the
assumption that the genomes of subspecies frorsaime species
share more similar regions than the genomes ofpsaiEes from
different species, Meta-IDBA divides the de Bruignaph into
many small connected components by removing crebves As
the genome sequences of subspecies even from e szecies
are not exactly the same, the consensus contig nuybe
represented by a simple path in the de Bruijn graphmay be
represented by a component with multiple paths (thuesp-
branches) from a source vertex to a single sinkexerso as to
confine the variations of the similar regions icle@enome. These
small components are then merged into bigger coetsnwhich
represent longer consensus contigs using pairedeamts$ (step 3).
In the last step of Meta-IDBA (step 4), each comgrnis trans-
formed to a multiple alignment of similar contigsdifferent subs-
pecies from the same species. The consensus comtigh
represents the similar contigs of the subspeciea species, is
found. The steps of Meta-IDBA will be describeddetail in the
following sections.




Peng et al.

2.1 Construct de Bruijn Graph

Any genome assembler based on the de Bruijn grapinoach
(Chaisson, et al., 2009; Peng, et al., 2010; Pevatal., 2001;
Simpson, et al., 2009; Zerbino and Birney, 2008) ba used to
assemble reads to form contigs as if the reads frene a single
genome. The de Bruijn graph-based algorithm fiistdds each
reads into lengti- substrings calledk-mers. Eachk-mer is
represented by a vertex in the de Bruijn graph.r@hie an edge
from u to v if the lengthk — 1 suffix ofk-meru is the same as the
lengthk — 1 prefix ofk-merv andk-mersu andv occur adjacently
in at least one read. In the single genome assepmblylem, each
simple path in the de Bruijn graph represents aigmf the ge-
nome and each branch represents a repeat regtbe genome or
an error in the read. The IDBA genome assemblendPet al.,
2010) is used in our implementation as IDBA iter@lly increases
the value otk and remove&-mers with few supports from reads,
more branches can be resolved and longer contigiseofenome
can be obtained. However, metagenomic data conteads from
genomes of multiple species, and the sp-branché<@branches
in the de Bruijn graph represent common regionsiotg in ge-
nomes of different species or subspecies. Thesisloh branches
cannot be removed by the single genome assembdethas very
short contigs will be produced especially for sagsplith many
subspecies of the same species. Thus, additicersd stre required
for resolving these branches.

2.2 Divide Graph into Connected Components

Based on the well accepted idea (Pop, 2009) thairges of subs-
pecies in the same species are more similar thaonges of subs-
pecies from different species, Meta-IDBA divide® ttle Bruijn
graph into connected components such that each aenp
represents a consensus contig of a species. Witlaghumption
that genomes of subspecies from the same speee®@ar similar,
there are many similar regions along the genomeevt@mmork-
mers (e.gk = 50) do not appear too distinct and at leastcore-
mon k-mer exists within a relative short region of ldngt (e.g.w
= 300 bp). On the other hand, the genomes of solespérom
different species seldom contain a comnkemer so frequently.
Based on this assumption, we divide the de Bruigply into com-
ponents by solving the following graph partitioniagorithm.

Graph Partition Problem: Given a directed grap®, the graph
partition problem is to partition the graph intoximal connected
components that satisfy the following property. Each vertexu
in a component, there is another vertaxin C such that (1) start-
ing from each out-going edgeof u, there is at least a path fram
to vin C with length at most, or (2) for every in-coming edge
of u, there is at least a path franto u in C with length at mostv.

The idea behind the formulation of the graph gartitproblem is
as follows. If ak-meru can reach anothdéemerv in a de Bruijn
graph through a path of length at masstarting from each of its
out-going edges (or vice vers&@mersu andv are likely to occur
in the genomes of subspecies from the same spesiesh
represent high similarity among the genomes of ghlespecies.

Otherwise k-mersu andv may occur in genomes of different spe-
cies and they should be separated.

The graph partition problem can be solved by adyedgorithm
which repeatedly checks all out-going (in-comindpes of each
vertex. If there are no paths of length at mestarting from (end-
ing with) the out-going (in-coming) edges of a eerti that ends
with (start from) another vertex, all the out-going (in-coming)
edges of vertexs are removed from the de Bruijn graph. The re-
moving process will be repeated until all composesstisfy our
requirements. The correctness of this greedy dlguris proved in
Theorem 1. The process will remove the cr-brandmesvell as
some of the sp-branches, resulting in many smalheoted com-
ponents with close common regiotksniers) representing consen-
sus contigs of a single species.

Theorem 1: The greedy algorithm solves the graph partitiosbpr
lem.

Proof: By induction of the number of removing edges. Witen
first edgee, = (uy,u;’) is removed by the greedy algorithm, edge
should not be in any component because either there vertexs
such that all out-going edgeswfcan access in a path inG with
length at mostv or there is no vertew such thau can access;’
by paths inG with length at mostv that end with each in-coming
edges ofu,’. Consider thek-th edgee, = (uy,Uy') removed by the
greedy algorithm. Either there is no vertesuch that all out-going
edges oly, can accessgin a path in G/§, ..., e.1} with length at
mostw or there is no verten such thati can access;’ by paths in
G/{ey, ..., &1} with length at mostv that end with each in-coming
edges oly/. Since the edges, ..., §.; are not in any component,
edgee, should not be in any component.

2.3 Connect components by paired-end reads

After solving the graph partition problem, largemgponents may
be broken down into smaller components becausieeoéironeous
reads and common regions among different spece®ach com-
ponent will representing a consensus contig of getiss from a
single species. Meta-IDBA merges the components latger
components using paired-end reads. A paired-endl negaresents
two reads appearing in the same genome with knowercand
distance (insert distance). One end of a pairedread is consi-
dered to appear in a component ik-aner of the read appears in
the component. If the two ends of a paired-end egazbar in dif-
ferent components, the paired-end read is considesea support
that the two components should be merged intogetazomponent.
Meta-IDBA merges the components if there are atlede.g.a =
10) supports from paired-end reads and the two ooemts are
connected by the shortest path which matches Wwithrisert dis-
tance of the pair-end reads only if the mergingniambiguous (i.e.
the merging will not be performed if a componert kaough sup-
ports to connect to more than one component). Maeonly the
components with consensus contig longer than irdistance are
considered in this procedure, because otherwiseorapanent
caused by a repeat region shorter than insertndisteill be con-
nected to multiple components with enough supports.

2.4 Construct MultipleAlignment and Consensus Contigs
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Low-complexity

Medium-complexity High-complexity

Taxonomic level < Genus < Family <Class
# of species 2 5 10
# of cases 10 10 5
Expression level Uniform Lognormal  Uniform Lognormal  Uniform Lognormal
Meta-IDBA Component Accuracy 98.82% 98.80% 98.32% 98.16% 99.35% 99.1%
N50 18,729 20,689 11,111 14,610 8,246 9,553
Coverage 91.76% 89.20% 87.39% 81.62% 91.47% 84.16%
# of contigs 2,674 2,180 13,627 7,716 55,249 38,500
# of bases 5,418,695 5,223,474 20,615,422 17,644,012 68,465,188 58,088,054
# of error contigs 9 9 26 21 90 223
# of error bases 57,645 44,427 115,050 82,159 336,429 371,334
Time 12.5m 12.1m 54.1m 55.2m 120.1m 115.7m
Velvet N50 11,437 9,771 3,356 3,433 1,983 1,997
Coverage 87.29% 83.70% 86.83% 84.88% 92.39% 75.77%
# of contigs 2,309 2,230 12,839 11,208 106,917 37,567
# of bases 4,876,110 4,674,621 15,824,798 16,017,085 70,072,915 44,948,173
# of error contigs 9 7 16 14 196 59
# of error bases 54,364 34,796 62,470 70,148 401,434 230,525
Time 16.8m 15.2m 44.7m 45.0m 96.4m 95.8m
Abyss N50 2,395 3,608 1,188 1,570 1,484 2,511
Coverage 95.06% 93.40% 93.80% 88.97% 94.56% 86.53%
# of contigs 10,724 8,448 48,409 35,796 123,583 85,837
# of bases 8,199,665 8,151,930 31,072,592 26,252,905 94,857,363 81,759,539
# of error contigs 15 20 45 42 426 389
# of error bases 24,035 22,733 43,112 39,118 173,856 163,246
Time 38.3m 37.5m 147.7m 145.7m 319.0m 323.1m
SOAPdenovo N50 7,457 8,233 2,502 2,171 1,806 1,351
Coverage 93.57% 93.91% 94.97% 93.77% 97,27% 87.37%
# of contigs 7,742 7,566 42,158 41,446 124,756 116,723
# of bases 6,253,699 6,210,923 25,421,067 24,160,482 80,261,153 63,438,459
# of error contigs 6 7 20 26 94 159
# of error bases 16,337 28,987 57,283 60,601 185,439 160,779
Time 11.3m 10.2m 39.8m 37.6m 84.7m 85.1m
Table. 3 The compositions and experiment results of simulated datasets.
Since the genomes of the subspecies from the spewes are
similar with small variants, it is very difficulotdetermine long
contigs (simple path) from each subspecies bectiese contigs 3 RESULTS

are interconnected in the de Bruijn graph. Insefagpresenting a
contig of a species by a simple path, a consensosgcof the

species (which has many subspecies) is represégtadcompo-
nent which is usually a direct acyclic graph (wétkception when
there is repeat region in the contig) to captues gmall variants
among the genomes of different subspecies in thee sspecies.
Each simple path in the component represents d sbotig of a
subspecies and the relative positions of theset sbatigs can be
obtained from the structure of the directed acygliaph. In order
to obtain a contig of a single species from the ponent, multiple
alignment of the short contigs represented by snmaiths is per-
formed. Meta-IDBA starts with an alignment of sost®rt simple
subpaths at the source vertex of the componenpesgtessively
constructs the alignments of longer contigs witfenence to the
longest subpath because it provides more informatiothe ge-
nomes of the subspecies than the short subpathgeligtions. As
the relative position of each simple path can berdened, the
alignment between each simple subpath can be fngadly. Fi-

nally, each component is represented by a consestsusy ob-

tained through multiple alignment.

3.1 Simulated data

To compare the performance of Meta-IDBA with theestassem-
blers, we constructed three datasets with diffecmhplexities.
The NCBI RefSeq (Pruitt, et al., 2009) database wsasl for gene-
rating the simulated sequencing reads. Table 3 @rines the
composition and experiment result of each dataset.

For low complexity datasets, two species, eachritpat least two
subspecies within a genus, were selected. Lengtkegbiencing
reads were sampled from the selected referencengermd 30x

depth. In all datasets, the error rate and indetance were set to
1% and 250, respectively. Medium-complexity and hhig
complexity datasets were generated similarly adogrdo the

properties shown in Table 3. Two distributions béiadance ratios
were used to generate simulated sequencing re&dsfifBt one

was uniform distribution, for a situation withouteven abundance
ratios. The other one was lognormal distributiance some re-
search on species richness estimation in metagendata shows
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Figure. 3 Experiment results of low-complexity datasets.
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Figure. 4 Experiment results of medium-complexity datasets.
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Figure. 5 Experiment results of high-complexity datasets.

that lognormal distribution fits the data well (Hpret al., 2006;
Youssef and Elshahed, 2008).

For comparison, Velvet, Abyss, SOAPdenovo and NEBBA

were executed on the above three datasets. Ix@dtienents, thé

value of the de Bruijn graph was set to 50. Defsalties were
used for all assemblers, except option "-M 3 -Facsivated to
merge similar regions for SOAPdenovo. The qualftpssembler
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TCAATGGTGGCGGGCT...TCCGTC...GCG...ACG...CGG...GTT...GCAA...AATA...TCG...GACG...ACC...ACGCTGC...TT...TAGACTCGC...ACAA...ACAAC...GTGACCG...AGAT...TGCT...ACGC...AGA...GTG...GTAATCG...
TTAACGGTGGTGGGTT...TCTGCC...GCG...ATG...CGG...GCT...GCAA...ACCA...TTG...GATG...ACC...ACGCTGC...TC...TCGACTCGC...ATAA...ACAAC...GTGACCG...AGAT...TGTT...ATGC...AAA...GCG...GCAACCG...
TCAGTGGCGGCGGATT...TCCGTC...GAG...ACG...CAG...GCT...GCAA...AATA...TCG...GACG...ATC...ACTTTGC...TT...TAGACTCGC...ACAA...ACGAC...GTGATCG...AAAT...TGCT....
TCAATGGTGGC_GGCT...TCCGTC...GCG...ACG...CGG...GTT...GCAA...AATA... XXX...GA_G... «.ACTTTGC...TT...TCGACTCGC...ACAA...ACAAC...GCGATCG...AGAT...TGCT...AT_C...

TCAATGGTG_CGGGCT... ...GCG...ACG...CGG...GTT...GCGA... ...ACGCTGC...TT...TCGACTCTC... ...AGAT...TGCT...ACGC...AGA...GTG...GTAATCG...

...ACGCTGC...TC...

Figure. 6 Multiple alignment of a component in 5 E.coli spbsies. Consensus is shown in the first row. Cerdig separated by spaces.
The conserved nucleotides are represented by Twsdifference between contigs and consensus ginidtited .

output was measured in three aspects on resultatigs: N50 for
contiguity, coverage for completeness, number mfrngous bases
for accuracy. If the assembler generates scaffalitls wildcard
nucleotide symbol 'N' inside, the 'N' will be renedvto split the
scaffolds into contigs. Correctness was checkedligpment, and
a contig is considered as correct if it can benaiyto a reference
with 95% similarity by BLAT (Kent, 2002). The 95%nslarity
means that the sum of mismatch bases and the iertgh should
not be larger than 5% of a contig. In the calcolatof N50 and
coverage, only correct contigs are considered. Meta-IDBA,
one more measures, is considered. The componentaagcindi-
cates how accurate graph separation method workenfponent
is considered as correct only if 95% of the bass&le one com-
ponent are actually from the same species. Theriexpetal re-
sults for datasets of different complexities arevah in Figures 3
to 5, and the average values of all measuremeatsuanmarized
in Table 3.

For the low-complexity dataset, Meta-IDBA had tleadest N50
in most cases, i.e. about 1.5 or more times thatebfet, Abyss
and SOAPdenovo. In a few cases, Velvet had siraildretter N50
than Meta-IDBA because the graph separation algarin Meta-
IDBA partitioned some parts of the graph into comgrts which
could be better handled by bubble merging for l@mplexity
datasets. When considering coverage, all the adsesritad simi-
lar performances. In general, Abyss and SOAPdehadbslightly
better coverage and produced more contigs. VehatiMeta-IDBA
had similar numbers of erroneous contigs, whichaalittle more
than Abyss and SOAPdenovo generated. Componentraagcu
showed that Meta-IDBA can separate contigs frorfecddht spe-
cies accurately. When considering lognormal distidn, it is
interesting to note that N50 of the assembly resiitreased in
some cases. This is because some subspecies, lawvingverage
after introducing different abundance ratios, can donsidered
removed from the dataset, reducing the compleXitthe dataset.
Consequently, the resultant contigs from the oieiilar species
did not form complicated components. Overall, tHEONf Meta-
IDBA for the lognormal distribution was always tetthan that of
the uniform distribution, because we applied theBdeijn graph
based assembler IDBA (Peng, et al., 2010) whicls d rely on
the read coverage of the genome very much.

For medium-complexity datasets, Meta-IDBA alwaysethe best
N50 among all assemblers. This means Meta-IDBAL do
group similar regions from different subspecieshef same species
together effectively when the complexity of graphreases, while
the bubble merging method failed in this situatidine perfor-
mances of all assemblers in coverage and accuragy similar to
those of low-complexity data.

The performance of the high-complexity datasetghésr con-
firmed that Meta-IDBA can handle complicated graphise N50
of the other assemblers is much shorter, while dfidfleta-IDBA
only decreased slightly. The other measures rerdasimilar as

before.

All the experiments were executed in an 8-core nm&clwith
144GB memory. The runtime of Meta-IDBA and Velvabwn in
Table 3 is more or less the same but shorter tierof Abyss.

3.2 Real data

A real metagenomic sequencing dataset (SRX024326) NCBI
(http://www.ncbi.nlm.nih.gov/) was used to evaluate the perfor-
mance of all assemblers in practice. It is a hummatagenome
sample from the G_DNA_Tongue dorsum of a femaldigpant
in the dbGaP study "HMP Core Microbiome Samplingtécol A
(HMP-A)". Meta-IDBA provided the longest contigs ang the
assemblers (Table 4). It is difficult to access dbeuracy of these
results, since there are no references for mospecies in the real
dataset. However, based on the results of simuletpériments,
we have high confidence that Meta-IDBA can prodeoerect
contigs and components.

# of cantigs ~ Total base N5C Maximurm
Metaidba 121,924 74,493,748 2380371,462
Velvet 199,310 80,297,709 738 207,709
Abyss 203,983 102,106,241 956 121,166
SOAPdenovo 271,500 110,655,983 591 367,374

Table. 4 Experimental results of real data

3.3 Multiplealignment of component

In the last step of Meta-IDBA, multiple alignmerste performed
among contigs in each component. Because of thecte® prop-

erties of the components, all contigs in one corepbmepresent
similar subsequences in some subspecies of the Saecees. Fig-
ure 6 presents part of the multiple alignment ebenponent from
5 E.coli subspecies, which shows similar contigthva small

number of variants. We can confirm confidently ttee multiple

alignment as shown in Figure 6 represents contigs fsimilar

subspecies.

4 DISCUSSION AND CONCLUSION

We tackled the assembly difficulty caused by thiymorphism in
similar species in metagenomic environment. Sintiégions be-
tween species make the de Bruijn graph more coatplic Based
on the observation that the genomes of subspewes the same
species share much more commemers than the genomes of
subspecies from different species, we define compbto present
the similar regions among subspecies from the sspeeies. The
assembly problem can then be modeled as a graptigmaprob-
lem. After that, we designed an algorithm to idignthe compo-
nents from de Bruijn graph. Finally, paired-endd®are used to
further connect components together.




Peng et al.

Experiments on datasets of different complexitibewsed that
Meta-IDBA can usually produce the longest contigthveimilar
accuracy and coverage when compared with othenrémdees,
especially for high-complexity datasets which contanore
branches since there are more genomes in the tHaBesdes
reconstructing longer contig, Meta-IDBA provides naultiple
alignment of similar contigs from different subsigscin the same
species which represents the variants among genofmdésese
subspecies. The multiple alignment may be usetuttyshe struc-
tural variations of genomes of different subspe@esietermine
conserved regions which have biological functiamsthe subspe-
cies. As the multiple alignments are constructealgreedy algo-
rithm, further study on finding the optimal mulgéphlignment may
improve the accuracy and the usage of Meta-IDBAanalyzing
metagenomic data. At present, Meta-IDBA cannot metoct the
contigs of each single subspecies because theangenhave a lot
of common regions. Further study on using pair-gridrmation
and read coverage for reconstructing these comtijde carried
out.

There are cases in which Meta-IDBA fails to separafids from
different species into components. One case iswndomplexity
dataset which consists of Streptococcus pyogengsSaeptococ-
cus dysgalactiae. Thle-mer similarity of these two species is
17.69% which is relatively higher than other pafr genomes
(about 1%). On the other hand, the component acguoh this
dataset is 93% which means many reads in the coemg®rare
shared by these two species and the some compomgmesent
similar regions of these two species. Thereforamight not be
necessary to separate the reads in these compasieroésthese
components may represent regions with the sigmifitéological
functions necessary for both species.

For metagenomic dataset with uneven abundancesrdterause
the IDBA genome assembler does not depend mucbwerage to
create de Bruijn graph, the change in abundancesratill not

affect its performance too much. If each speciesaimpled with
high enough coverage (the required coverage depmntise error
rate and read length), they can be assembled bg-NdD&A. How-

ever, uneven abundance ratios will affect the seigplates of
reads of different species, but the differenceamgling rates can
also provide information to separate the reads kainfpom spe-
cies with low abundance ratios and those from sgegiith high

abundance ratios (Wu and Ye, 2010). More reseahnciilg be

performed for studying how to make use of this iinfation to

improve the accuracy of Meta-IDBA.

Since our graph partition algorithm cannot distisguerroneous
edges and correct edges inside the graph, it nefigsmuch on the
quality of the de Bruijn graph generated by theeasder. If there
are many false positive edges, the graph may b#tipaed into
many small components. Similarly, if there are mapgcies (in
practice, there are many more species (>1000) tthase used in
our simulation), there would be more edges in thaply, which
also leads to many small components. As shown bieT4, there
is a big gap between the assembly results of sisgézies and
metagenomic. Much can be done to improve the guafitmeta-
genomic assembly.
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